Tutorial – simulation of Aspirin bound to Phospholipase-2A

Ligandbook contains parameter sets for Aspirin for the OPLS-AA force-field under LigandBook ID LBID 785 at

https://ligandbook.org/package/permalink/785/latest
  

However the atom order will be different from what's available in the PDB sturcutures of aspirin-protein complexes. This makes using these parameters hard – one has to manually re-order the atoms, something that's error-prone and tedious. Ligandbook has a function that allows parameter files to be re-ordered to match your input PDB file.

We want to simulate the system basing on the following 1OXR PDB file.

Aspirin induces its Anti-inflammatory effects through its specific
binding to Phospholipase A2: Crystal structure of the complex
formed between Phospholipase A2 and Aspirin at 1.9A resolution
DOI: 10.2210/pdb1oxr/pdb
  

Let's start by downloading the PDB file

$ wget http://files.rcsb.org/view/1oxr.pdb
  

Select out the ligand (resname AIN) using a text editor, VMD or, as we do in the following, MDAnalysis.

#!/usr/bin/env python
from MDAnalysis import Universe
u = Universe("1oxr.pdb")
u.select_atoms("resname AIN").write("1oxr_resname-AIN.pdb")
  

This writes out a ligand-only file (no hydrogens)

Protonate ligand

To protonate the ligand, we've used Schrodinger's Maestro PrepWizard and exported the protonated ligand (charged, -1 form) as 1oxr_resname-AIN_Hs.pdb. Alternatively, you could use RDKit (free and open source).

On the main Ligandbook page, upload the 1oxr_resname-AIN.pdb or 1oxr_resname-AIN_Hs.pdb to get the re-orderd parameter files.

If you haven't protonated the ligand manually, Ligandbook will generate re-ordered parameters for all protonation states of the molecule in the database.

If the upload and re-ordering is successful you should see the following page:

The charged aspirin package has structure and topology files called '57b9d65c162e4.pdb' and '57b9d65c14721.itp' respectively, so we're going to download '57b9d65c162e4-out.pdb' '57b9d65c14721-out.itp' from the Results section.

Generate topologies

From the PDB file select only the protein and calcium ion.

#!/usr/bin/env python
from MDAnalysis import Universe
u = Universe("1oxr.pdb")
u.select_atoms("resname CA").set_segids("B")
u.select_atoms("protein or resname CA").write("protein.pdb")
  

Generate separate topologies for the protein Ca2+ ion

gmx pdb2gmx -f protein.pdb -o protein.gro -merge no
15: OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)
 3: TIP3P  TIP 3-point
  

Manually modify topol.top to include '57b9d65c14721-out.itp' and add AIN to '[ molecules ]' section.

; Include topology for ions
#include "oplsaa.ff/ions.itp"

; Include topology for ligand
#include "57b9d65c14721-out.itp"

[ system ]
; Name
PHOSPHOLIPASE A2 ISOFORM 3;

[ molecules ]
; Compound        #mols
Protein_chain_A     1
Ion_chain_B         1
AIN                 1
  

Merge the protein and ion structure with the ligand structure. Confirm visually in VMD that the ligand is at the right position.

#!/usr/bin/env python
from MDAnalysis import Universe, Merge
p = Universe("protein.gro")
l = Universe("57b9d65c162e4-out.pdb")
u = Merge(p.atoms, l.atoms)
u.atoms.write("conf.gro")
  

Finally adjust the box size to something reasonable, here a 5 nm cube.

gmx editconf -f conf.gro -o conf.gro -box 5 5 5

Run a short minimization simulation

Download a simple MDP file for steepest-descent minimization minim.mdp.

Run grompp

gmx grompp -f minim.mdp

Setting the LD random seed to 616040524
Generated 330891 of the 330891 non-bonded parameter combinations
Generating 1-4 interactions: fudge = 0.5
Generated 330891 of the 330891 1-4 parameter combinations
Excluding 3 bonded neighbours molecule type 'Protein_chain_A'
Excluding 3 bonded neighbours molecule type 'Ion_chain_B'
Excluding 3 bonded neighbours molecule type 'AIN'

NOTE 2 [file topol.top, line 51]:
  System has non-zero total charge: -3.000000
  Total charge should normally be an integer. See
  http://www.gromacs.org/Documentation/Floating_Point_Arithmetic
  for discussion on how close it should be to an integer.



Removing all charge groups because cutoff-scheme=Verlet
Analysing residue names:
There are:   119    Protein residues
There are:     1        Ion residues
There are:     1      Other residues
Analysing Protein...
Analysing residues not classified as Protein/DNA/RNA/Water and splitting into groups...
Analysing residues not classified as Protein/DNA/RNA/Water and splitting into groups...
Number of degrees of freedom in T-Coupling group rest is 5250.00
Calculating fourier grid dimensions for X Y Z
Using a fourier grid of 42x42x42, spacing 0.119 0.119 0.119
Estimate for the relative computational load of the PME mesh part: 0.50

NOTE 3 [file minim.mdp]:
  The optimal PME mesh load for parallel simulations is below 0.5
  and for highly parallel simulations between 0.25 and 0.33,
  for higher performance, increase the cut-off and the PME grid spacing.


This run will generate roughly 0 Mb of data

There were 3 notes

gcq#265: "set: No match." (tcsh)

Execute mdrun

  gmx mdrun -v
  Steepest Descents:
     Tolerance (Fmax)   =  1.00000e+03
     Number of steps    =        50000
  Step=    0, Dmax= 1.0e-02 nm, Epot= -1.05985e+04 Fmax= 1.20986e+04, atom= 1728
  Step=    1, Dmax= 1.0e-02 nm, Epot= -1.54148e+04 Fmax= 7.65660e+03, atom= 1729
  Step=    2, Dmax= 1.2e-02 nm, Epot= -1.77683e+04 Fmax= 5.36818e+03, atom= 1729
  Step=    3, Dmax= 1.4e-02 nm, Epot= -1.91571e+04 Fmax= 8.70649e+03, atom= 1736
  Step=    4, Dmax= 1.7e-02 nm, Epot= -1.94310e+04 Fmax= 1.83734e+04, atom= 1736
  Step=    5, Dmax= 2.1e-02 nm, Epot= -1.97775e+04 Fmax= 1.42154e+04, atom= 1736
  Step=    7, Dmax= 1.2e-02 nm, Epot= -2.00253e+04 Fmax= 5.42548e+03, atom= 1736
  Step=    8, Dmax= 1.5e-02 nm, Epot= -2.01336e+04 Fmax= 1.79265e+04, atom= 1736
  Step=    9, Dmax= 1.8e-02 nm, Epot= -2.03538e+04 Fmax= 1.03227e+04, atom= 1736
  Step=   11, Dmax= 1.1e-02 nm, Epot= -2.04666e+04 Fmax= 6.52568e+03, atom= 1736
  Step=   12, Dmax= 1.3e-02 nm, Epot= -2.04942e+04 Fmax= 1.38291e+04, atom= 1736
  Step=   13, Dmax= 1.5e-02 nm, Epot= -2.06030e+04 Fmax= 1.04612e+04, atom= 1736
  Step=   15, Dmax= 9.3e-03 nm, Epot= -2.07028e+04 Fmax= 4.19987e+03, atom= 1736
  Step=   16, Dmax= 1.1e-02 nm, Epot= -2.07199e+04 Fmax= 1.31600e+04, atom= 1736
  Step=   17, Dmax= 1.3e-02 nm, Epot= -2.08254e+04 Fmax= 7.90087e+03, atom= 1736
  Step=   19, Dmax= 8.0e-03 nm, Epot= -2.08845e+04 Fmax= 4.72093e+03, atom= 1736
  Step=   20, Dmax= 9.6e-03 nm, Epot= -2.08968e+04 Fmax= 1.03994e+04, atom= 1736
  Step=   21, Dmax= 1.2e-02 nm, Epot= -2.09576e+04 Fmax= 7.81277e+03, atom= 1736
  Step=   23, Dmax= 6.9e-03 nm, Epot= -2.10126e+04 Fmax= 3.08803e+03, atom= 1736
  Step=   24, Dmax= 8.3e-03 nm, Epot= -2.10267e+04 Fmax= 1.00567e+04, atom= 1736
  Step=   25, Dmax= 1.0e-02 nm, Epot= -2.10907e+04 Fmax= 5.62295e+03, atom= 1736
  Step=   27, Dmax= 6.0e-03 nm, Epot= -2.11245e+04 Fmax= 3.87609e+03, atom= 1736
  Step=   28, Dmax= 7.2e-03 nm, Epot= -2.11399e+04 Fmax= 7.33757e+03, atom= 1736
  Step=   29, Dmax= 8.6e-03 nm, Epot= -2.11719e+04 Fmax= 6.32620e+03, atom= 1736
  Step=   31, Dmax= 5.2e-03 nm, Epot= -2.12090e+04 Fmax= 1.80368e+03, atom= 1736
  Step=   32, Dmax= 6.2e-03 nm, Epot= -2.12349e+04 Fmax= 8.10774e+03, atom= 1736
  Step=   33, Dmax= 7.5e-03 nm, Epot= -2.12807e+04 Fmax= 3.61644e+03, atom= 1736
  Step=   35, Dmax= 4.5e-03 nm, Epot= -2.13013e+04 Fmax= 3.48689e+03, atom= 1736
  Step=   36, Dmax= 5.4e-03 nm, Epot= -2.13179e+04 Fmax= 4.92513e+03, atom= 1736
  Step=   37, Dmax= 6.4e-03 nm, Epot= -2.13355e+04 Fmax= 5.27419e+03, atom= 1736
  Step=   38, Dmax= 7.7e-03 nm, Epot= -2.13449e+04 Fmax= 6.88341e+03, atom= 1736
  Step=   39, Dmax= 9.3e-03 nm, Epot= -2.13562e+04 Fmax= 7.77583e+03, atom= 1736
  Step=   41, Dmax= 5.6e-03 nm, Epot= -2.14004e+04 Fmax= 1.00781e+03, atom= 1736
  Step=   42, Dmax= 6.7e-03 nm, Epot= -2.14333e+04 Fmax= 9.49746e+03, atom= 1736
  Step=   43, Dmax= 8.0e-03 nm, Epot= -2.14894e+04 Fmax= 3.16515e+03, atom= 1736
  Step=   45, Dmax= 4.8e-03 nm, Epot= -2.15007e+04 Fmax= 4.41849e+03, atom= 1736
  Step=   46, Dmax= 5.8e-03 nm, Epot= -2.15134e+04 Fmax= 4.69975e+03, atom= 1736
  Step=   47, Dmax= 6.9e-03 nm, Epot= -2.15192e+04 Fmax= 6.22042e+03, atom= 1736
  Step=   48, Dmax= 8.3e-03 nm, Epot= -2.15278e+04 Fmax= 6.90746e+03, atom= 1736
  Step=   50, Dmax= 5.0e-03 nm, Epot= -2.15621e+04 Fmax= 9.63041e+02, atom= 1736

  writing lowest energy coordinates.

  Steepest Descents converged to Fmax < 1000 in 51 steps
  Potential Energy  = -2.1562055e+04
  Maximum force     =  9.6304138e+02 on atom 1736
  Norm of force     =  8.1507614e+01

  gcq#108: "Motherhood Means Mental Freeze" (The Breeders)  
  

Closing remarks

This is a minimal setup for an in-vacuo minimzation. It's a basic test case - if this flow described above works, you can proceed to adding water and ions to your system.